3.214 \(\int \frac {1}{\sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}} \, dx\)

Optimal. Leaf size=85 \[ \frac {\sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}+\frac {\left (\frac {1}{2}-\frac {i}{2}\right ) \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{\sqrt {a} d} \]

[Out]

(1/2-1/2*I)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))/d/a^(1/2)+tan(d*x+c)^(1/2)/d/(a+I
*a*tan(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.20, antiderivative size = 85, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3548, 3546, 3544, 205} \[ \frac {\sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}+\frac {\left (\frac {1}{2}-\frac {i}{2}\right ) \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{\sqrt {a} d} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]]),x]

[Out]

((1/2 - I/2)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/(Sqrt[a]*d) + Sqrt[Tan[
c + d*x]]/(d*Sqrt[a + I*a*Tan[c + d*x]])

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 3544

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
(-2*a*b)/f, Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3546

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(a*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n)/(2*b*f*m), x] - Dist[(a*c - b*d)/(2*b^2), Int[(a + b*Tan[e
 + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] &&
EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && EqQ[m + n, 0] && LeQ[m, -2^(-1)]

Rule 3548

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Si
mp[(d*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n + 1))/(f*m*(c^2 + d^2)), x] + Dist[a/(a*c - b*d), Int[(a
+ b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && NeQ[b*c - a*
d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && EqQ[m + n + 1, 0] &&  !LtQ[m, -1]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}} \, dx &=\frac {2 \sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}+i \int \frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}} \, dx\\ &=\frac {\sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}+\frac {\int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx}{2 a}\\ &=\frac {\sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}-\frac {(i a) \operatorname {Subst}\left (\int \frac {1}{-i a-2 a^2 x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}\\ &=\frac {\left (\frac {1}{2}-\frac {i}{2}\right ) \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{\sqrt {a} d}+\frac {\sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.57, size = 140, normalized size = 1.65 \[ -\frac {i e^{-2 i (c+d x)} \sqrt {\frac {a e^{2 i (c+d x)}}{1+e^{2 i (c+d x)}}} \left (e^{2 i (c+d x)}+e^{i (c+d x)} \sqrt {-1+e^{2 i (c+d x)}} \tanh ^{-1}\left (\frac {e^{i (c+d x)}}{\sqrt {-1+e^{2 i (c+d x)}}}\right )-1\right )}{\sqrt {2} a d \sqrt {\tan (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]]),x]

[Out]

((-I)*Sqrt[(a*E^((2*I)*(c + d*x)))/(1 + E^((2*I)*(c + d*x)))]*(-1 + E^((2*I)*(c + d*x)) + E^(I*(c + d*x))*Sqrt
[-1 + E^((2*I)*(c + d*x))]*ArcTanh[E^(I*(c + d*x))/Sqrt[-1 + E^((2*I)*(c + d*x))]]))/(Sqrt[2]*a*d*E^((2*I)*(c
+ d*x))*Sqrt[Tan[c + d*x]])

________________________________________________________________________________________

fricas [B]  time = 0.61, size = 299, normalized size = 3.52 \[ \frac {{\left (a d \sqrt {-\frac {2 i}{a d^{2}}} e^{\left (i \, d x + i \, c\right )} \log \left (\frac {1}{4} \, a d \sqrt {-\frac {2 i}{a d^{2}}} e^{\left (i \, d x + i \, c\right )} + \frac {1}{4} \, \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )}\right ) - a d \sqrt {-\frac {2 i}{a d^{2}}} e^{\left (i \, d x + i \, c\right )} \log \left (-\frac {1}{4} \, a d \sqrt {-\frac {2 i}{a d^{2}}} e^{\left (i \, d x + i \, c\right )} + \frac {1}{4} \, \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )}\right ) + 2 \, \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{4 \, a d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+I*a*tan(d*x+c))^(1/2)/tan(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

1/4*(a*d*sqrt(-2*I/(a*d^2))*e^(I*d*x + I*c)*log(1/4*a*d*sqrt(-2*I/(a*d^2))*e^(I*d*x + I*c) + 1/4*sqrt(2)*sqrt(
a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*(e^(2*I*d*x + 2*I*c)
 + 1)) - a*d*sqrt(-2*I/(a*d^2))*e^(I*d*x + I*c)*log(-1/4*a*d*sqrt(-2*I/(a*d^2))*e^(I*d*x + I*c) + 1/4*sqrt(2)*
sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*(e^(2*I*d*x + 2
*I*c) + 1)) + 2*sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*
c) + 1))*(e^(2*I*d*x + 2*I*c) + 1))*e^(-I*d*x - I*c)/(a*d)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {i \, a \tan \left (d x + c\right ) + a} \sqrt {\tan \left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+I*a*tan(d*x+c))^(1/2)/tan(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(I*a*tan(d*x + c) + a)*sqrt(tan(d*x + c))), x)

________________________________________________________________________________________

maple [B]  time = 0.24, size = 352, normalized size = 4.14 \[ -\frac {\sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (\sqrt {\tan }\left (d x +c \right )\right ) \left (i \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \left (\tan ^{2}\left (d x +c \right )\right ) a -i \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a +2 \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \tan \left (d x +c \right ) a +4 i \tan \left (d x +c \right ) \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+4 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\right )}{4 d a \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \left (-\tan \left (d x +c \right )+i\right )^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+I*a*tan(d*x+c))^(1/2)/tan(d*x+c)^(1/2),x)

[Out]

-1/4/d*(a*(1+I*tan(d*x+c)))^(1/2)*tan(d*x+c)^(1/2)/a*(I*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+
I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*tan(d*x+c)^2*a-I*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)
*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*a+2*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^
(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*tan(d*x+c)*a+4*I*(a*tan(d*x+c)
*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2)*tan(d*x+c)+4*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2))/(a*tan(
d*x+c)*(1+I*tan(d*x+c)))^(1/2)/(-I*a)^(1/2)/(-tan(d*x+c)+I)^2

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {i \, a \tan \left (d x + c\right ) + a} \sqrt {\tan \left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+I*a*tan(d*x+c))^(1/2)/tan(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(I*a*tan(d*x + c) + a)*sqrt(tan(d*x + c))), x)

________________________________________________________________________________________

mupad [B]  time = 6.09, size = 171, normalized size = 2.01 \[ \frac {\sqrt {\mathrm {tan}\left (c+d\,x\right )}\,2{}\mathrm {i}}{\left (\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}-\sqrt {a}\right )\,\left (d\,1{}\mathrm {i}-\frac {a\,d\,\mathrm {tan}\left (c+d\,x\right )}{{\left (\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}-\sqrt {a}\right )}^2}\right )}+\frac {2\,\sqrt {\frac {1}{8}{}\mathrm {i}}\,\mathrm {atanh}\left (\frac {32\,\sqrt {\frac {1}{8}{}\mathrm {i}}\,{\left (-a\right )}^{9/2}\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}}{\left (a^4\,4{}\mathrm {i}-\frac {4\,a^5\,\mathrm {tan}\left (c+d\,x\right )}{{\left (\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}-\sqrt {a}\right )}^2}\right )\,\left (\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}-\sqrt {a}\right )}\right )}{\sqrt {-a}\,d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(tan(c + d*x)^(1/2)*(a + a*tan(c + d*x)*1i)^(1/2)),x)

[Out]

(tan(c + d*x)^(1/2)*2i)/(((a + a*tan(c + d*x)*1i)^(1/2) - a^(1/2))*(d*1i - (a*d*tan(c + d*x))/((a + a*tan(c +
d*x)*1i)^(1/2) - a^(1/2))^2)) + (2*(1i/8)^(1/2)*atanh((32*(1i/8)^(1/2)*(-a)^(9/2)*tan(c + d*x)^(1/2))/((a^4*4i
 - (4*a^5*tan(c + d*x))/((a + a*tan(c + d*x)*1i)^(1/2) - a^(1/2))^2)*((a + a*tan(c + d*x)*1i)^(1/2) - a^(1/2))
)))/((-a)^(1/2)*d)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {i a \left (\tan {\left (c + d x \right )} - i\right )} \sqrt {\tan {\left (c + d x \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+I*a*tan(d*x+c))**(1/2)/tan(d*x+c)**(1/2),x)

[Out]

Integral(1/(sqrt(I*a*(tan(c + d*x) - I))*sqrt(tan(c + d*x))), x)

________________________________________________________________________________________